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Long Erasure Codes BOF

• We first looked at low-rate codes, drawing on our experience in designing such 
codes for the AWGN channel

• However, high code rates are called for if erasure-correcting codes are used as an 

Long Erasure Codes BOF

, g g
outer code to a high-performance inner error-correcting code such as a turbo or 
LDPC code

• This presentation reviews results (both theoretcal and simulated) for low-rate codes 
(r ~ 1/2) and introduces new results for high-rate codes (r ~ 9/10 and higher) and for 
“quantized rateless” high rate codesquantized-rateless  high-rate codes

• Results are valid for both the binary erasure channel (BEC).  They are also valid for a 
block erasure channel (BlEC) or burst erasure channel (BuEC), provided the code 
size is measured in units of blocks and data blocks are interleaved sufficiently to 
make block erasures independent throughout a codeword (see next slide for 
interleaving and encoding method)
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A Method for Encoding LDPC Codes over Burst Erasure Channel

Frame 1

Bit 1 Bit n

Transmit 1

Frame 2

Frame 3

Frame 4

Transmit 2• The data frames each of size 
n are transmitted over a burst 
erasure channel. 
• The encoding method is more 

Frame N-2

Frame N-1

F N
Transmit N

effective for channels with 
random burst erasures of size 
B < n. 
• Assume these bursts occur 

Frame N

Each column is
Encoded with a rate
N/(N+m) protograph
LDPC code

with probability p. 
• The frames are stored as 
rows of a N x n matrix. Then 
each column of the matrix is 

Parity Frame
Transmit N+1

Parity Frame
Transmit N+m

encoded with a (N+m,N) LDPC 
code.
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Protograph LDPC codes

• For high-speed decoding, it is advantageous for an LDPC code to be constructed 
from a protograph.  JPL has extensive experience designing protograph LDPC codes 
for AWGN channels.
• A protograph is a Tanner graph with a relatively small number of nodes. A ``copy-and-
permute'' operation can be applied to the protograph to obtain larger derived graphs of 
various sizes.
• This operation consists of first making N copies of the protograph, and then p g p p g p ,
permuting the endpoints of each edge among the N variable and N check nodes 
connected to the set of N edges copied from the same edge in the protograph.
• The derived graph is the graph of a code N times as large as the code corresponding 
to the protograph with the same rate and the same distribution of variable and check p g p
node degrees.
• As a simple example, we consider the protograph shown in Fig. 1. This graph 
consists of 3 variable nodes and 2 check nodes, connected by 5 edges.

Variable 
nodes

0 1 20 1 20 1 20 1 2 0 1 20 1 20 1 2

Edge 
types

Check 
nodes

0 10 10 10 1 0 10 10 1
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Low-Rate Protograph Codes

• Protographs can be designed with asymptotic 
thresholds very close to the capacity limits at low 
rates (e.g., r = 1/2)

• Rate-1/2 ARA-type protograph at right has 
asymptotic decoding threshold p* = 0.4951 on the 
BEC

Extremely close to the capacity limit p = 0 5 for any– Extremely close to the capacity limit p = 0.5 for any 
rate-1/2 code on the BEC

• However, simulated performance for reasonable 
block sizes k = 1000 to 4000 is poor

• A somewhat better choice for finite blocks is a less 
optimized protograph such as the rate-1/2 AR4JA 
protograph designed for the AWGN channel

– asymptotic threshold is poorer, p* = 0.44, but 
performance is better, with no error floor
For AR4JA codes the minimum stopping set size and– For AR4JA codes, the minimum stopping set size and 
the minimum codeword weight both grow linearly with 
block size 
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Analysis of Stopping Set Enumerators
For Protograph based Code EnsemblesFor Protograph-based Code Ensembles

• Significance of Stopping Sets
– A set of variable nodes is called a stopping set if all its check node neighbors are 

connected to this set at least twiceconnected to this set at least twice.
– Message passing decoding fails whenever all the variable nodes in a stopping set are 

erased.
– Thus, for message-passing LDPC decoders, on the BEC channel, the size of a stopping 

set plays a role similar to that of codeword weights for maximum-likelihood decoders.

• Analysis of ensemble average stopping set size enumerators
– We aim to design protograph LDPC codes such that the minimum stopping set size of the 

code grows linearly with block size 
• because codes with linear minimum stopping set have low error floor performance on the BECbecause codes with linear minimum stopping set have low error floor performance on the BEC 

when decoded iteratively via message passing
– To do this, we first need to compute stopping set size enumerators for protograph-based 

LDPC code ensembles
• Such computational tools have been developed elsewhere for unstructured irregular LDPC code 

ensembles onlyensembles only
– We developed a new computational method to evaluate stopping set enumerators for 

structured LDPC codes built from protographs.
– We used this analysis method to design protograph LDPC codes with linear minimum 

stopping set size (i.e. minimum stopping set size growing linearly with code block size)
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Minimum Stopping Set Size Analysispp g y

• Vertical axis in graph at right is the 
normalized logarithmic stopping set 
size distribution of code ensembles

0.35

size distribution of code ensembles 
built from the give protographs

• Horizontal axis is the normalized 
stopping set size relative to code 
length 0.20

0.25

0.30

RJA protograph

• If the curve starts negative, the first 
zero crossing δmin is the coefficient 
of linear growth of stopping set size 
with code length

• Many simple protographs (e.g., 
rs

(δ
)

0.10

0.15

δS
min =0.011

ARJA protography p p g p ( g
IRA, ARA) have curves starting with 
zero or positive slope, hence δmin = 
0, i.e., no linear growth of stopping 
set size with code length

• Both rate-1/2 AR4JA and (slightly 

0.00

0.05

δS
min=0.012

precoder

( g y
less complex R4JA) protographs 
show linear growth, with 
coefficients 0.012 and 0.011 
respectively.

δ

0.200.190.180.170.160.150.140.130.120.110.100.090.080.070.060.050.040.030.020.010.00
-0.05
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High-Rate Protograph Codesg g p
• High-rate protographs (e.g., r = 0.9) must be 

very simple, because there are many variable 
nodes per check node (e.g., 10:1 ratio for r = 
0 9)

8

IRA
0.9)

– Many variable nodes in protograph allows little 
room for expansion by large-sze circulants, unless 
the overall code size is extremely large

• At high rates, irregular degree distributions
i l d t i l th ’ t l

7

6

23

3

Low threshold

R=0.9– give only moderate gains unless they’re extremely 
irregular

– Give poor performance at finite block sizes if 
they’re extremely irregular

• Example at right is an IRA code (irregular 
repeat and accumulate) with one repeat 23

0

9

5

4

3

3

3

3

R 0.9

repeat-and-accumulate) with one repeat-23 
node and the other 9 repetitions of degree-3, 
plus an accumulator (degree-2)

– Asymptotic threshold p* = 0.0927 is close to the 
capacity limit of p = 0.1 (achieved code rate within 
h=0 8% of BEC capacity C=1–p* at the asymptotic

2

3
3

3

3 p*=0.0927
C=1-p*h 0.8% of BEC capacity C 1 p  at the asymptotic 

threshold)
– By comparison, optimum unstructured LDPC code 

with degrees 2-100 has p*=0.090, (h=1.08%), but 
maximum degree 100 (illustrates effectiveness of 
protograph structure to reduce the required 
maximum node degree)

1

0

3
C 1 p
h = (C-R)/C=0.80%

Sublinear minimum stopping set size
(due to degree-2 accumulator)
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High-Rate Protograph Codes (cont.)g g p ( )
• Codes designed from IRA-type protographs 

have sublinear minimum stopping set size
• IRJA-type protograph using a “jagged 

8

IRJA
accumulator” with degree-3 nodes yields linearly 
growing minimum stopping set size

• IRJA protograph at right has same degree 
distribution as IRA protograph on previous slide, 
except for the degree-3 jagged accumulator R=0.9

7

6

23

3

Low error floor

p g j gg
– Asymptotic threshold p* = 0.0919 is also close to 

the capacity limit of p = 0.1 (achieved code rate 
within h=0.89% of BEC capacity C=1–p* at the 
asymptotic threshold)

– By comparison, optimum unstructured LDPC code 
with degrees 3 100 has p*=0 083 (h=1 87%) but

0

9

5

4

3

3

3

3with degrees 3-100 has p*=0.083 (h=1.87%), but 
maximum degree 100.  Thus, the IRJA protograph 
is even more effective at reducing the required 
maximum node degree compared to unstructured 
LDPC codes constrained to have no degree-2 
nodes (to achieve linearly growing minimum 
stopping set si e)

2

3

3

3 p*=0.0919
C=1-p*

stopping set size) 1

0

3
p

h=(C-R)/C=0.89%

Linear minimum stopping set size
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High-Rate Protograph Codes (cont.)g g p ( )
• Despite the good asymptotic thresholds, the 

degree-23 nodes in the previous protographs 
cause considerable “expansion suboptimality” 

h d d t bl k i f l f 7

8

4
RJA

when expanded to block sizes of only a few 
thousand bits (because either the circulants are 
too small or the graph will have too many short 
loops)

• The regular RJA-type protograph using all 

7

6

4

4

4
R=0.9

Low error floor

repeat-4 nodes and a “jagged accumulator” with 
degree-3 nodes is designed to reduce this 
problem

– Asymptotic threshold p* = 0.0782 is significantly 
farther from the capacity limit of p = 0.1 (achieved 
code rate within h=2 36% of BEC capacity C=1 p*

0

9

5

4

4

4

4

4code rate within h=2.36% of BEC capacity C=1–p* 
at the asymptotic threshold)

– This protograph also yields linearly growing 
minimum stopping set size

– Performance of codes expanded to about a 
thousand bits is superior to that of codes obtained 

2

3
4

4

4
p*=0.078218
C=1-p*

(C )/C %
p

from the protographs with better asymptotic 
thresholds but higher maximum-degree nodes 
(see next slide for comparison) 

Linear minimum stopping set size

1

0

4
h=(C-R)/C=2.36%
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High-Rate Protograph Codes (cont.)g g p ( )

• Both rate-9/10 
protographs are 
expanded to block size

10 0

10 1

7

6

8

4

4

Code Rate = 0.9 
k=1044 bits

Solid: FERexpanded to block size 
k = 1044

• The RJA code (with 
maximum degree 4) 
gives acceptable 
performance

10-2

10-1

ili
ty 3

0

9

6

5

4

4

4

4

4

Solid: FER
Dashed: BER

RJA– still not very close to 
the asymptotic 
threshold, due to the 
relatively small block 
size

– compare to bounds for 
finite block size on 
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Th=0.0782

RJA
(max deg 4)

next slide
• The IRJA code (with 

maximum degree 23) 
gives horrible 
performance 

– due to many loops in
10-6

10-5Fr
am

e 
a

2

3

0
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3

3

3

3

3 Th=0.0919
due to many loops in 
the expanded graph, 
despite its superior 
asymptotic threshold
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(max deg 23)
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Simulation Results Compared with Bounds for the BEC

10 0

10 1

n=1160 
k=1044 
R=0.9

Channel: Binary Erasure 

RJA

• Upper and lower 
bounds are for finite-
size codes with 

10 -2

10 -1

Protograph LDPC code
simulations

RJA
(max deg 4)

7

6

8

4

4

same rate r = 9/10 
and block size k = 
1044 as the RJA 
code tested

• Upper bounds are for

10 -4

10 -3

P
w Gallager

upper bound
Berlekamp

upper bound
3

0

9

5

4

4

4

4

4

4

Upper bounds are for 
average performance 
of random codes on 
the BEC.  Lower 
bound limits the 
performance on the 

10 -6

10 -5

Singleton
lower bound

2

1

0

4

4

pe o a ce o t e
BEC of any code 
with the given r and k

• There is still a 
significant difference 
between the RJA

0 1000 0950 0900 0850 0800 0750 0700 0650 0600 0550 0500 0450 0400 0350 0300 0250 020

10 -8

10 -7

between the RJA 
code’s performance 
and the performance 
predicted by the 
bounds
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Quantized-Rateless High-Rate Codes

• The regular RJA protograph can be punctured to form a “quantized-rateless” code achieving three 
different discrete rates over a range from 0.9 to ~0.95

– The three codes are progressive parity codes (like the rateless codes of Digital Fountain).  In other words:  
(1) th k i t bit d d b h d d (2) th d d bit f h hi h t d b t(1) the same k input bits are encoded by each code; and (2) the coded bits of each higher-rate code are a subset 
of the coded bits of the next lower-rate code.

– This gives three different performance options, allowing the code to adapt somewhat to an unpredictable channel 
(see performance curves on next slide)

– Unlike fountain codes, this “quantized-rateless” code includes only a discrete set of rates covering a limited rate 
range

4 4 4 4 4 4 4 4 4

Expand first by 4; 
then apply circulant 
permutations to 
edges of expanded 

t h

range

protograph

Puncture 0, 1, or 2 of 
the gray degree-3 
nodes obtaining
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Performance of Quantized-Rateless RJA Codes

Rate=0.947 Rate=0.900input block 
k=1044

100

101

Rate=0.923• All three codes were 
tested with input block

ba
bi

lit
y

FER
FER

10-2

10-1

FER

BER

tested with input block 
size k = 1044

• The quantized-rateless 
family allows one to 
seamlessly and 
efficiently achieve FER
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10-5

10-4

10-3efficiently achieve FER 
of about 10–6 with 
channel erasure 
probabilities varying 
from about 0.01 to 0.04
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Efficiencies of Rateless and Fixed-Rate CodesEfficiencies of Rateless and Fixed-Rate Codes 
on the Binary Erasure Channel

A rateless code communicates k (fixed) information symbols by transmitting n (variable) coded symbols.
LT codes and Raptor codes are examples of rateless codes that are simple to encode and decode.

The inventors of LT and Raptor codes, Luby and Shokrollahi, define the overhead ε of a rateless code on a pure 
erasure channel as

ε = (k+ - k)/k
where k+ is the number of coded symbols that are successfully received (not erased)

Another measure of overhead is the fraction of excess information at the capacity limit in the transmitted coded 
symbols

δ = (Cn - k)/k = C/r - 1
where C is the capacity of the channel (per transmitted coded symbol), and r is the code rate

R d t l d hi f b bilit th h l ith f t ti llRandom rateless codes can achieve zero frame erasure probability on the erasure channel with fantastically 
small average overhead E{ε} = E{δ}, even with small finite input blocks, if they are decoded optimally (see 
graph).

LT codes and Raptor codes of unbounded input block size can achieve arbitrarily small frame erasure 
probability with arbitrarily small overheads ε → 0 as k → ∞

Large LT codes and Raptor codes with practical finite input blocks can achieve extremely small frame erasureLarge LT codes and Raptor codes with practical finite input blocks can achieve extremely small frame erasure 
probabilities with maximum overheads of a few percent (see graph)

Smaller Raptor codes (e.g., designed for 3GPP-MBMS standard) can achieve moderately low frame erasure 
rates with maximum overheads of a few percent (see graph)

Fixed-rate codes of high rate (e.g., the r = 0.99 eIRA codes of Chiani presented at Athens) can achieve low 
overheads δ ,  but with only moderately low residual erasure probabilities
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Random rateless

Average overhead 
E{ }  or E{δ} 

Coding bound

E{ε}  or E{δ} 

Pw = 0 Pw = 10-14

Pw = 10-6

overhead ε

overhead δ

Pw = 0 

w

Pw = 10-3

∞
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Conclusions

• For very high code rates and short block sizes, a low 
asymptotic threshold criterion is not the best approach to 
designing LDPC codes.
Si l t h ith h l it d l i• Simple protographs with much regularity and low maximum 
node degrees appear to be the best choices

• Quantized-rateless protograph LDPC codes can be built by 
careful design of the protograph such that multiple puncturing g p g p p p g
patterns will still permit message passing decoding to proceed

CCSDS Rome meetings 17


